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LETTER TO THE EDITOR 

Estimates of the ground states of the Yukawa potential 
from the Bogoliubov inequality 

Christopher C Gerry 
Department of Physics, St Bonaventure University, St Bonaventure, New York 14778, 
USA 

Received 8 February 1984 

Abstract. Using the SO(2, 1) dynamical group formulation of the Coulomb problem, we 
obtain estimates on the ground state energies of the Yukawa potential by employing the 
Bogoliubov inequality. 

In this letter we present an application of the Bogoliubov inequality 

a exp(l~~lXI$), (1) 

where X is an operator, to the problems of bound states of the Yukawa potential 
v ( r )  = - ( a / r )  exp(-Ar). At first glance, such an application is not obvious due to the 
presence of the Coulomb factor (-air). However in the SO(2,l) dynamical group 
approach, the entire eigenvalue problem must be pre-multiplied from the left by the 
radial variable r. The resulting expression may then be expressed entirely in terms of 
the generators of SO(2,l) .  We may thus employ the inequality of equation (1) to 
obtain upper bounds on the energy eigenvalues. 

To demonstrate this explicitly we proceed as follows. The eigenvalue problem for 
the Hamiltonian 

The generators of SO(2,l)  in the case of the Coulomb problem are realised as (Barut 
1971) 

ko = $(rp2+ r )  k, = f( rp2 - r )  k2 = r.p - i. (5a9 b, c) 

Thus we may write equation (4) as 

h ( E )  = 4( ko+ k,) - E (  ko- k,) - a exp[-A( ko- k,)]. (6) 

The basis states for the relevant unitary irreducible representations of SO(2, l )  are 
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labelled In, I )  such that 

(nil kol nl) = n, 

(n l lk , ln l )=O.  

n = 1 , 2 , .  . . , 

The quantum number n is identified with the usual principal quantum number and 1 
is the angular momentum. However the states In/) are not in fact the physical states, 
which we label la), but are related to them by the tilting transformation 

I 2) = eiek21 nl). (8) 

The tilting angle 8 is usually fixed by the requirement that the coefficients of the 
non-compact generator k l ,  vanish. Here we shall treat it as a variational parameter 
(Gerry and Silverman 1983). 

To obtain E as a function of 8 we write 

(n?lfi(E)ln?) = o  (9) 

and from equations (7) and (8) and the Baker-Hausdorff-Campbell formula obtain 
(Gerry and Laub 1983) 

E,,( e) = $ e2' - ( a /  n )  e'(,?/ exp[-A ( k o -  kl)Il& (10) 

As a special case for A = 0, the minimum of E,,,( e )  is easily found to be at 8 = In( a / n )  
yielding the usual point Coulomb energies E,, = -a2/(2n2). For A # 0 we apply the 
inequality of equation (1) to write 

( exp[ -A ( ko - kl)]l 2) 3 exp [-A ( 21 ( ko - k ,  ) I a)] 
3exp[-A eFe(nll(ko- kl ) ln l ) ]  

3 exp[-A e-%]. (11) 

EL(B)=$eZe-(a/n)eeexp(-A e-'n) 12) 

Then defining 

we have inequality 

EL( e )  3 En ( e )  (13) 
so that EL(8) apparently provides an upper bound to E,,(@). It should be pointed out 
that &(e) itself is not exact and must be minimised according to the variational 
principle.) 

We now minimise EL( e )  of equation (12) to obtain estimates on the ground state 
of the Yukawa potential and compare our results with the numerical results of McEnnan 
et a1 (1976). We follow these authors and take a = Za and A as the Thomas-Fermi 
radius 1.13aZ"3. Our results are displayed in table 1.  Given the crudeness of the 
approximation, the results are surprisingly accurate especially for Z = 36 and 79. 

Actually it is possible to use this dynamical group formulation to obtain very accurate 
results. This comes about from the fact that the left-hand side of equation (10) can be 
evaluated completely as an analytically continued finite SO(2,l) transformation matrix 
element. These matrix elements can be neatly expressed in terms of the Bargmann 
functions (Bargmann 1947). Using the variational method the energy eigenvalues are 
generally more accurate than the analytic perturbation calculations of McEnnan et al. 
This calculation will be presented elsewhere (Gerry and Laub 1983). 
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Table 1. Estimates of the energy eigenvalues from a variational calculation based on 
equation (1). The numerical values quoted are from McEnnan er a1 (1976). 

Fractional 
Z a ee E' E (numerical) error 

1 3  0.094 86 0.093 07 -1.450 (0)  -1.488 (0) 0.0255 
36 0.262 70 0.261 36 -1.416 ( 1 )  -1.424 ( 1 )  0.0056 
79 0.576 47 0.575 43 -7.480 (1)  -7.495 ( 1 )  0.0020 
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